Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CAHPHF: Context-Aware Hierarchical QoS Prediction with Hybrid Filtering (2001.09897v1)

Published 13 Jan 2020 in cs.IR

Abstract: With the proliferation of Internet-of-Things and continuous growth in the number of web services at the Internet-scale, the service recommendation is becoming a challenge nowadays. One of the prime aspects influencing the service recommendation is the Quality-of-Service (QoS) parameter, which depicts the performance of a web service. In general, the service provider furnishes the value of the QoS parameters during service deployment. However, in reality, the QoS values of service vary across different users, time, locations, etc. Therefore, estimating the QoS value of service before its execution is an important task, and thus the QoS prediction has gained significant research attention. Multiple approaches are available in the literature for predicting service QoS. However, these approaches are yet to reach the desired accuracy level. In this paper, we study the QoS prediction problem across different users, and propose a novel solution by taking into account the contextual information of both services and users. Our proposal includes two key steps: (a) hybrid filtering and (b) hierarchical prediction mechanism. On the one hand, the hybrid filtering method aims to obtain a set of similar users and services, given a target user and a service. On the other hand, the goal of the hierarchical prediction mechanism is to estimate the QoS value accurately by leveraging hierarchical neural-regression. We evaluate our framework on the publicly available WS-DREAM datasets. The experimental results show the outperformance of our framework over the major state-of-the-art approaches.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.