Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Hierarchical Reinforcement Learning for Self-Driving Decision-Making without Reliance on Labeled Driving Data (2001.09816v1)

Published 27 Jan 2020 in eess.SY and cs.SY

Abstract: Decision making for self-driving cars is usually tackled by manually encoding rules from drivers' behaviors or imitating drivers' manipulation using supervised learning techniques. Both of them rely on mass driving data to cover all possible driving scenarios. This paper presents a hierarchical reinforcement learning method for decision making of self-driving cars, which does not depend on a large amount of labeled driving data. This method comprehensively considers both high-level maneuver selection and low-level motion control in both lateral and longitudinal directions. We firstly decompose the driving tasks into three maneuvers, including driving in lane, right lane change and left lane change, and learn the sub-policy for each maneuver. Then, a master policy is learned to choose the maneuver policy to be executed in the current state. All policies including master policy and maneuver policies are represented by fully-connected neural networks and trained by using asynchronous parallel reinforcement learners (APRL), which builds a mapping from the sensory outputs to driving decisions. Different state spaces and reward functions are designed for each maneuver. We apply this method to a highway driving scenario, which demonstrates that it can realize smooth and safe decision making for self-driving cars.

Citations (78)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.