Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Perfecting the Crime Machine (2001.09764v2)

Published 14 Jan 2020 in cs.CY, cs.LG, and stat.AP

Abstract: This study explores using different machine learning techniques and workflows to predict crime related statistics, specifically crime type in Philadelphia. We use crime location and time as main features, extract different features from the two features that our raw data has, and build models that would work with large number of class labels. We use different techniques to extract various features including combining unsupervised learning techniques and try to predict the crime type. Some of the models that we use are Support Vector Machines, Decision Trees, Random Forest, K-Nearest Neighbors. We report that the Random Forest as the best performing model to predict crime type with an error log loss of 2.3120.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.