Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parallel Factor Decomposition Channel Estimation in RIS-Assisted Multi-User MISO Communication (2001.09413v1)

Published 26 Jan 2020 in cs.IT, eess.SP, and math.IT

Abstract: Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks due to their fast and low power configuration enabling massive connectivity and low latency communications. Channel estimation in RIS-based systems is one of the most critical challenges due to the large number of reflecting unit elements and their distinctive hardware constraints. In this paper, we focus on the downlink of a RIS-assisted multi-user Multiple Input Single Output (MISO) communication system and present a method based on the PARAllel FACtor (PARAFAC) decomposition to unfold the resulting cascaded channel model. The proposed method includes an alternating least squares algorithm to iteratively estimate the channel between the base station and RIS, as well as the channels between RIS and users. Our selective simulation results show that the proposed iterative channel estimation method outperforms a benchmark scheme using genie-aided information. We also provide insights on the impact of different RIS settings on the proposed algorithm.

Citations (92)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.