Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Scene Text Recognition With Finer Grid Rectification (2001.09389v1)

Published 26 Jan 2020 in cs.CV

Abstract: Scene Text Recognition is a challenging problem because of irregular styles and various distortions. This paper proposed an end-to-end trainable model consists of a finer rectification module and a bidirectional attentional recognition network(Firbarn). The rectification module adopts finer grid to rectify the distorted input image and the bidirectional decoder contains only one decoding layer instead of two separated one. Firbarn can be trained in a weak supervised way, only requiring the scene text images and the corresponding word labels. With the flexible rectification and the novel bidirectional decoder, the results of extensive evaluation on the standard benchmarks show Firbarn outperforms previous works, especially on irregular datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.