Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards High Performance Low Complexity Calibration in Appearance Based Gaze Estimation (2001.09284v2)

Published 25 Jan 2020 in cs.CV

Abstract: Appearance-based gaze estimation from RGB images provides relatively unconstrained gaze tracking. We have previously proposed a gaze decomposition method that decomposes the gaze angle into the sum of a subject-independent gaze estimate from the image and a subject-dependent bias. This paper extends that work with a more complete characterization of the interplay between the complexity of the calibration dataset and estimation accuracy. We analyze the effect of the number of gaze targets, the number of images used per gaze target and the number of head positions in calibration data using a new NISLGaze dataset, which is well suited for analyzing these effects as it includes more diversity in head positions and orientations for each subject than other datasets. A better understanding of these factors enables low complexity high performance calibration. Our results indicate that using only a single gaze target and single head position is sufficient to achieve high quality calibration, outperforming state-of-the-art methods by more than 6.3%. One of the surprising findings is that the same estimator yields the best performance both with and without calibration. To better understand the reasons, we provide a new theoretical analysis that specifies the conditions under which this can be expected.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhaokang Chen (7 papers)
  2. Bertram E. Shi (28 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.