Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unsupervised Learning Methods for Visual Place Recognition in Discretely and Continuously Changing Environments (2001.08960v1)

Published 24 Jan 2020 in cs.CV and cs.RO

Abstract: Visual place recognition in changing environments is the problem of finding matchings between two sets of observations, a query set and a reference set, despite severe appearance changes. Recently, image comparison using CNN-based descriptors showed very promising results. However, existing experiments from the literature typically assume a single distinctive condition within each set (e.g., reference: day, query: night). We demonstrate that as soon as the conditions change within one set (e.g., reference: day, query: traversal daytime-dusk-night-dawn), different places under the same condition can suddenly look more similar than same places under different conditions and state-of-the-art approaches like CNN-based descriptors fail. This paper discusses this practically very important problem of in-sequence condition changes and defines a hierarchy of problem setups from (1) no in-sequence changes, (2) discrete in-sequence changes, to (3) continuous in-sequence changes. We will experimentally evaluate the effect of these changes on two state-of-the-art CNN-descriptors. Our experiments emphasize the importance of statistical standardization of descriptors and shows its limitations in case of continuous changes. To address this practically most relevant setup, we investigate and experimentally evaluate the application of unsupervised learning methods using two available PCA-based approaches and propose a novel clustering-based extension of the statistical normalization.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.