Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Clustering Methods Assessment for Investment in Zero Emission Neighborhoods Energy System (2001.08936v1)

Published 24 Jan 2020 in math.OC and cs.CE

Abstract: This paper investigates the use of clustering in the context of designing the energy system of Zero Emission Neighborhoods (ZEN). ZENs are neighborhoods who aim to have net zero emissions during their lifetime. While previous work has used and studied clustering for designing the energy system of neighborhoods, no article dealt with neighborhoods such as ZEN, which have high requirements for the solar irradiance time series, include a CO2 factor time series and have a zero emission balance limiting the possibilities. To this end several methods are used and their results compared. The results are on the one hand the performances of the clustering itself and on the other hand, the performances of each method in the optimization model where the data is used. Various aspects related to the clustering methods are tested. The different aspects studied are: the goal (clustering to obtain days or hours), the algorithm (k-means or k-medoids), the normalization method (based on the standard deviation or range of values) and the use of heuristic. The results highlight that k-means offers better results than k-medoids and that k-means was systematically underestimating the objective value while k-medoids was constantly overestimating it. When the choice between clustering days and hours is possible, it appears that clustering days offers the best precision and solving time. The choice depends on the formulation used for the optimization model and the need to model seasonal storage. The choice of the normalization method has the least impact, but the range of values method show some advantages in terms of solving time. When a good representation of the solar irradiance time series is needed, a higher number of days or using hours is necessary. The choice depends on what solving time is acceptable.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)