Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-DerainGAN: A New Semi-supervised Single Image Deraining Network (2001.08388v3)

Published 23 Jan 2020 in cs.CV

Abstract: Removing the rain streaks from single image is still a challenging task, since the shapes and directions of rain streaks in the synthetic datasets are very different from real images. Although supervised deep deraining networks have obtained impressive results on synthetic datasets, they still cannot obtain satisfactory results on real images due to weak generalization of rain removal capacity, i.e., the pre-trained models usually cannot handle new shapes and directions that may lead to over-derained/under-derained results. In this paper, we propose a new semi-supervised GAN-based deraining network termed Semi-DerainGAN, which can use both synthetic and real rainy images in a uniform network using two supervised and unsupervised processes. Specifically, a semi-supervised rain streak learner termed SSRML sharing the same parameters of both processes is derived, which makes the real images contribute more rain streak information. To deliver better deraining results, we design a paired discriminator for distinguishing the real pairs from fake pairs. Note that we also contribute a new real-world rainy image dataset Real200 to alleviate the difference between the synthetic and real image do-mains. Extensive results on public datasets show that our model can obtain competitive performance, especially on real images.

Citations (9)

Summary

We haven't generated a summary for this paper yet.