Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Safety Considerations in Deep Control Policies with Safety Barrier Certificates Under Uncertainty (2001.08198v2)

Published 22 Jan 2020 in cs.RO

Abstract: Recent advances in Deep Machine Learning have shown promise in solving complex perception and control loops via methods such as reinforcement and imitation learning. However, guaranteeing safety for such learned deep policies has been a challenge due to issues such as partial observability and difficulties in characterizing the behavior of the neural networks. While a lot of emphasis in safe learning has been placed during training, it is non-trivial to guarantee safety at deployment or test time. This paper extends how under mild assumptions, Safety Barrier Certificates can be used to guarantee safety with deep control policies despite uncertainty arising due to perception and other latent variables. Specifically for scenarios where the dynamics are smooth and uncertainty has a finite support, the proposed framework wraps around an existing deep control policy and generates safe actions by dynamically evaluating and modifying the policy from the embedded network. Our framework utilizes control barrier functions to create spaces of control actions that are safe under uncertainty, and when the original actions are found to be in violation of the safety constraint, uses quadratic programming to minimally modify the original actions to ensure they lie in the safe set. Representations of the environment are built through Euclidean signed distance fields that are then used to infer the safety of actions and to guarantee forward invariance. We implement this method in simulation in a drone-racing environment and show that our method results in safer actions compared to a baseline that only relies on imitation learning to generate control actions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.