Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A hybrid discontinuous Galerkin method for transport equations on networks (2001.08004v1)

Published 22 Jan 2020 in math.NA and cs.NA

Abstract: We discuss the mathematical modeling and numerical discretization of transport problems on one-dimensional networks. Suitable coupling conditions are derived that guarantee conservation of mass across network junctions and dissipation of a mathematical energy which allows to prove existence of unique solutions. We then consider the space discretization by a hybrid discontinuous Galerkin method which provides a suitable upwind mechanism to handle the transport problem and allows to incorporate the coupling conditions in a natural manner. In addition, the method inherits mass conservation and stability of the continuous problem. Order optimal convergence rates are established and illustrated by numerical tests.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.