Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Benchmarking Symbolic Execution Using Constraint Problems -- Initial Results (2001.07914v1)

Published 22 Jan 2020 in cs.SE and cs.AI

Abstract: Symbolic execution is a powerful technique for bug finding and program testing. It is successful in finding bugs in real-world code. The core reasoning techniques use constraint solving, path exploration, and search, which are also the same techniques used in solving combinatorial problems, e.g., finite-domain constraint satisfaction problems (CSPs). We propose CSP instances as more challenging benchmarks to evaluate the effectiveness of the core techniques in symbolic execution. We transform CSP benchmarks into C programs suitable for testing the reasoning capabilities of symbolic execution tools. From a single CSP P, we transform P depending on transformation choice into different C programs. Preliminary testing with the KLEE, Tracer-X, and LLBMC tools show substantial runtime differences from transformation and solver choice. Our C benchmarks are effective in showing the limitations of existing symbolic execution tools. The motivation for this work is we believe that benchmarks of this form can spur the development and engineering of improved core reasoning in symbolic execution engines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.