Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning functions varying along a central subspace (2001.07883v3)

Published 22 Jan 2020 in math.ST, stat.ML, and stat.TH

Abstract: Many functions of interest are in a high-dimensional space but exhibit low-dimensional structures. This paper studies regression of a $s$-H\"{o}lder function $f$ in $\mathbb{R}D$ which varies along a central subspace of dimension $d$ while $d\ll D$. A direct approximation of $f$ in $\mathbb{R}D$ with an $\varepsilon$ accuracy requires the number of samples $n$ in the order of $\varepsilon{-(2s+D)/s}$. In this paper, we analyze the Generalized Contour Regression (GCR) algorithm for the estimation of the central subspace and use piecewise polynomials for function approximation. GCR is among the best estimators for the central subspace, but its sample complexity is an open question. We prove that GCR leads to a mean squared estimation error of $O(n{-1})$ for the central subspace, if a variance quantity is exactly known. The estimation error of this variance quantity is also given in this paper. The mean squared regression error of $f$ is proved to be in the order of $\left(n/\log n\right){-\frac{2s}{2s+d}}$ where the exponent depends on the dimension of the central subspace $d$ instead of the ambient space $D$. This result demonstrates that GCR is effective in learning the low-dimensional central subspace. We also propose a modified GCR with improved efficiency. The convergence rate is validated through several numerical experiments.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)