Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adaptive Loss Function for Super Resolution Neural Networks Using Convex Optimization Techniques (2001.07766v1)

Published 21 Jan 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Single Image Super-Resolution (SISR) task refers to learn a mapping from low-resolution images to the corresponding high-resolution ones. This task is known to be extremely difficult since it is an ill-posed problem. Recently, Convolutional Neural Networks (CNNs) have achieved state of the art performance on SISR. However, the images produced by CNNs do not contain fine details of the images. Generative Adversarial Networks (GANs) aim to solve this issue and recover sharp details. Nevertheless, GANs are notoriously difficult to train. Besides that, they generate artifacts in the high-resolution images. In this paper, we have proposed a method in which CNNs try to align images in different spaces rather than only the pixel space. Such a space is designed using convex optimization techniques. CNNs are encouraged to learn high-frequency components of the images as well as low-frequency components. We have shown that the proposed method can recover fine details of the images and it is stable in the training process.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.