Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Domain-Aware Dialogue State Tracker for Multi-Domain Dialogue Systems (2001.07526v1)

Published 21 Jan 2020 in cs.CL and cs.AI

Abstract: In task-oriented dialogue systems the dialogue state tracker (DST) component is responsible for predicting the state of the dialogue based on the dialogue history. Current DST approaches rely on a predefined domain ontology, a fact that limits their effective usage for large scale conversational agents, where the DST constantly needs to be interfaced with ever-increasing services and APIs. Focused towards overcoming this drawback, we propose a domain-aware dialogue state tracker, that is completely data-driven and it is modeled to predict for dynamic service schemas. The proposed model utilizes domain and slot information to extract both domain and slot specific representations for a given dialogue, and then uses such representations to predict the values of the corresponding slot. Integrating this mechanism with a pretrained LLM (i.e. BERT), our approach can effectively learn semantic relations.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.