Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Grocery Store Flexibility Management Using Model Predictive Control With Neural Networks (2001.07448v1)

Published 21 Jan 2020 in eess.SY and cs.SY

Abstract: As more and more energy is produced from renewable energy sources (RES), the challenge for balancing production and consumption is being shifted to consumers instead of the power grid. This requires new and intelligent ways of flexibility management at individual building and district levels. To this end, this paper presents a model based optimal control (MPC) algorithm embedded with deep neural network for day-ahead consumption and production forecasting. The algorithm is used to optimize a medium-sized grocery store energy consumption located in Finland. System was tested in a simulation tool utilising real-life power measurements from the grocery store. We report a $8.4\%$ reduction in daily peak loads with flexibility provided by a $20$ kWh battery. On the other hand, a significant benefit was not seen in trying to optimize with respect to the energy spot price. We conclude that our approach is able to significantly reduce peak loads in a grocery store without additional operational costs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.