Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards Fault Localization via Probabilistic Software Modeling (2001.07409v2)

Published 21 Jan 2020 in cs.SE

Abstract: Software testing helps developers to identify bugs. However, awareness of bugs is only the first step. Finding and correcting the faulty program components is equally hard and essential for high-quality software. Fault localization automatically pinpoints the location of an existing bug in a program. It is a hard problem, and existing methods are not yet precise enough for widespread industrial adoption. We propose fault localization via Probabilistic Software Modeling (PSM). PSM analyzes the structure and behavior of a program and synthesizes a network of Probabilistic Models (PMs). Each PM models a method with its inputs and outputs and is capable of evaluating the likelihood of runtime data. We use this likelihood evaluation to find fault locations and their impact on dependent code elements. Results indicate that PSM is a robust framework for accurate fault localization.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.