Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity of limit-cycle problems in Boolean networks (2001.07391v1)

Published 21 Jan 2020 in cs.DM

Abstract: Boolean networks are a general model of interacting entities, with applications to biological phenomena such as gene regulation. Attractors play a central role, and the schedule of entities update is a priori unknown. This article presents results on the computational complexity of problems related to the existence of update schedules such that some limit-cycle lengths are possible or not. We first prove that given a Boolean network updated in parallel, knowing whether it has at least one limit-cycle of length $k$ is $\text{NP}$-complete. Adding an existential quantification on the block-sequential update schedule does not change the complexity class of the problem, but the following alternation brings us one level above in the polynomial hierarchy: given a Boolean network, knowing whether there exists a block-sequential update schedule such that it has no limit-cycle of length $k$ is $\Sigma_2\text{P}$-complete.

Citations (12)

Summary

We haven't generated a summary for this paper yet.