Papers
Topics
Authors
Recent
2000 character limit reached

A Simple Model for Portable and Fast Prediction of Execution Time and Power Consumption of GPU Kernels (2001.07104v3)

Published 20 Jan 2020 in cs.DC, cs.LG, and cs.PF

Abstract: Characterizing compute kernel execution behavior on GPUs for efficient task scheduling is a non-trivial task. We address this with a simple model enabling portable and fast predictions among different GPUs using only hardware-independent features. This model is built based on random forests using 189 individual compute kernels from benchmarks such as Parboil, Rodinia, Polybench-GPU and SHOC. Evaluation of the model performance using cross-validation yields a median Mean Average Percentage Error (MAPE) of 8.86-52.00% and 1.84-2.94%, for time respectively power prediction across five different GPUs, while latency for a single prediction varies between 15 and 108 milliseconds.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.