Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

2PS: High-Quality Edge Partitioning with Two-Phase Streaming (2001.07086v1)

Published 20 Jan 2020 in cs.DC

Abstract: Graph partitioning is an important preprocessing step to distributed graph processing. In edge partitioning, the edge set of a given graph is split into $k$ equally-sized partitions, such that the replication of vertices across partitions is minimized. Streaming is a viable approach to partition graphs that exceed the memory capacities of a single server. The graph is ingested as a stream of edges, and one edge at a time is immediately and irrevocably assigned to a partition based on a scoring function. However, streaming partitioning suffers from the uninformed assignment problem: At the time of partitioning early edges in the stream, there is no information available about the rest of the edges. As a consequence, edge assignments are often driven by balancing considerations, and the achieved replication factor is comparably high. In this paper, we propose 2PS, a novel two-phase streaming algorithm for high-quality edge partitioning. In the first phase, vertices are separated into clusters by a lightweight streaming clustering algorithm. In the second phase, the graph is re-streamed and edge partitioning is performed while taking into account the clustering of the vertices from the first phase. Our evaluations show that 2PS can achieve a replication factor that is comparable to heavy-weight random access partitioners while inducing orders of magnitude lower memory overhead.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.