Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Interpretable Filter Learning Using Soft Self-attention For Raw Waveform Speech Recognition (2001.07067v1)

Published 20 Jan 2020 in eess.AS

Abstract: Speech recognition from raw waveform involves learning the spectral decomposition of the signal in the first layer of the neural acoustic model using a convolution layer. In this work, we propose a raw waveform convolutional filter learning approach using soft self-attention. The acoustic filter bank in the proposed model is implemented using a parametric cosine-modulated Gaussian filter bank whose parameters are learned. A network-in-network architecture provides self-attention to generate attention weights over the sub-band filters. The attention weighted log filter bank energies are fed to the acoustic model for the task of speech recognition. Experiments are conducted on Aurora-4 (additive noise with channel artifact), and CHiME-3 (additive noise with reverberation) databases. In these experiments, the attention based filter learning approach provides considerable improvements in ASR performance over the baseline mel filter-bank features and other robust front-ends (average relative improvement of 7% in word error rate over baseline features on Aurora-4 dataset, and 5% on CHiME-3 database). Using the self-attention weights, we also present an analysis on the interpretability of the filters for the ASR task.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.