Pairwise Discriminative Neural PLDA for Speaker Verification (2001.07034v2)
Abstract: The state-of-art approach to speaker verification involves the extraction of discriminative embeddings like x-vectors followed by a generative model back-end using a probabilistic linear discriminant analysis (PLDA). In this paper, we propose a Pairwise neural discriminative model for the task of speaker verification which operates on a pair of speaker embeddings such as x-vectors/i-vectors and outputs a score that can be considered as a scaled log-likelihood ratio. We construct a differentiable cost function which approximates speaker verification loss, namely the minimum detection cost. The pre-processing steps of linear discriminant analysis (LDA), unit length normalization and within class covariance normalization are all modeled as layers of a neural model and the speaker verification cost functions can be back-propagated through these layers during training. We also explore regularization techniques to prevent overfitting, which is a major concern in using discriminative back-end models for verification tasks. The experiments are performed on the NIST SRE 2018 development and evaluation datasets. We observe average relative improvements of 8% in CMN2 condition and 30% in VAST condition over the PLDA baseline system.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.