Emergent Mind

Abstract

Classifiers built with neural networks handle large-scale high dimensional data, such as facial images from computer vision, extremely well while traditional statistical methods often fail miserably. In this paper, we attempt to understand this empirical success in high dimensional classification by deriving the convergence rates of excess risk. In particular, a teacher-student framework is proposed that assumes the Bayes classifier to be expressed as ReLU neural networks. In this setup, we obtain a sharp rate of convergence, i.e., $\tilde{O}d(n{-2/3})$, for classifiers trained using either 0-1 loss or hinge loss. This rate can be further improved to $\tilde{O}d(n{-1})$ when the data distribution is separable. Here, $n$ denotes the sample size. An interesting observation is that the data dimension only contributes to the $\log(n)$ term in the above rates. This may provide one theoretical explanation for the empirical successes of deep neural networks in high dimensional classification, particularly for structured data.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.