Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Algorithms in Multi-Agent Systems: A Holistic Perspective from Reinforcement Learning and Game Theory (2001.06487v3)

Published 17 Jan 2020 in cs.GT, cs.AI, cs.LG, and cs.MA

Abstract: Deep reinforcement learning (RL) has achieved outstanding results in recent years, which has led a dramatic increase in the number of methods and applications. Recent works are exploring learning beyond single-agent scenarios and considering multi-agent scenarios. However, they are faced with lots of challenges and are seeking for help from traditional game-theoretic algorithms, which, in turn, show bright application promise combined with modern algorithms and boosting computing power. In this survey, we first introduce basic concepts and algorithms in single agent RL and multi-agent systems; then, we summarize the related algorithms from three aspects. Solution concepts from game theory give inspiration to algorithms which try to evaluate the agents or find better solutions in multi-agent systems. Fictitious self-play becomes popular and has a great impact on the algorithm of multi-agent reinforcement learning. Counterfactual regret minimization is an important tool to solve games with incomplete information, and has shown great strength when combined with deep learning.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)