Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Combining PRNU and noiseprint for robust and efficient device source identification (2001.06440v1)

Published 17 Jan 2020 in cs.CV and eess.IV

Abstract: PRNU-based image processing is a key asset in digital multimedia forensics. It allows for reliable device identification and effective detection and localization of image forgeries, in very general conditions. However, performance impairs significantly in challenging conditions involving low quality and quantity of data. These include working on compressed and cropped images, or estimating the camera PRNU pattern based on only a few images. To boost the performance of PRNU-based analyses in such conditions we propose to leverage the image noiseprint, a recently proposed camera-model fingerprint that has proved effective for several forensic tasks. Numerical experiments on datasets widely used for source identification prove that the proposed method ensures a significant performance improvement in a wide range of challenging situations.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.