Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Supervised Speaker Embedding De-Mixing in Two-Speaker Environment (2001.06397v2)

Published 14 Jan 2020 in cs.SD, cs.CL, cs.LG, and eess.AS

Abstract: Separating different speaker properties from a multi-speaker environment is challenging. Instead of separating a two-speaker signal in signal space like speech source separation, a speaker embedding de-mixing approach is proposed. The proposed approach separates different speaker properties from a two-speaker signal in embedding space. The proposed approach contains two steps. In step one, the clean speaker embeddings are learned and collected by a residual TDNN based network. In step two, the two-speaker signal and the embedding of one of the speakers are both input to a speaker embedding de-mixing network. The de-mixing network is trained to generate the embedding of the other speaker by reconstruction loss. Speaker identification accuracy and the cosine similarity score between the clean embeddings and the de-mixed embeddings are used to evaluate the quality of the obtained embeddings. Experiments are done in two kind of data: artificial augmented two-speaker data (TIMIT) and real world recording of two-speaker data (MC-WSJ). Six different speaker embedding de-mixing architectures are investigated. Comparing with the performance on the clean speaker embeddings, the obtained results show that one of the proposed architectures obtained close performance, reaching 96.9% identification accuracy and 0.89 cosine similarity.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)