Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Convex Optimization for Caching Networks (2001.06351v1)

Published 16 Jan 2020 in cs.NI

Abstract: We study the problem of wireless edge caching when file popularity is unknown and possibly non-stationary. A bank of $J$ caches receives file requests and a utility is accrued for each request depending on the serving cache. The network decides dynamically which files to store at each cache and how to route them, in order to maximize total utility. The request sequence is assumed to be drawn from an arbitrary distribution, thus capturing time-variance, temporal, or spatial locality of requests. For this challenging setting, we propose the \emph{Bipartite Supergradient Caching Algorithm} (BSCA) which provably exhibits no regret ($R_T/T \to 0$). That is, as the time horizon $T$ increases, BSCA achieves the same performance with the cache configuration that we would have chosen knowing all future requests. The learning rate of the algorithm is characterized by its regret expression, found to be $R_T=O(\sqrt{JT})$, which is independent of the content catalog size. For the single-cache case, we prove that this is the lowest attainable bound. BSCA requires at each step $J$ projections on intersections of boxes and simplices, for which we propose a tailored algorithm. Our model is the first that draws a connection between the network caching problem and Online Convex Optimization, and we demonstrate its generality by discussing various practical extensions and presenting a trace-driven comparison with state-of-the-art competitors.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.