Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Communication-Efficient Distributed Estimator for Generalized Linear Models with a Diverging Number of Covariates (2001.06194v2)

Published 17 Jan 2020 in stat.ME, cs.DC, cs.LG, and stat.ML

Abstract: Distributed statistical inference has recently attracted immense attention. The asymptotic efficiency of the maximum likelihood estimator (MLE), the one-step MLE, and the aggregated estimating equation estimator are established for generalized linear models under the "large $n$, diverging $p_n$" framework, where the dimension of the covariates $p_n$ grows to infinity at a polynomial rate $o(n\alpha)$ for some $0<\alpha<1$. Then a novel method is proposed to obtain an asymptotically efficient estimator for large-scale distributed data by two rounds of communication. In this novel method, the assumption on the number of servers is more relaxed and thus practical for real-world applications. Simulations and a case study demonstrate the satisfactory finite-sample performance of the proposed estimators.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.