Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Elastic Consistency: A General Consistency Model for Distributed Stochastic Gradient Descent (2001.05918v2)

Published 16 Jan 2020 in cs.LG and stat.ML

Abstract: Machine learning has made tremendous progress in recent years, with models matching or even surpassing humans on a series of specialized tasks. One key element behind the progress of machine learning in recent years has been the ability to train machine learning models in large-scale distributed shared-memory and message-passing environments. Many of these models are trained employing variants of stochastic gradient descent (SGD) based optimization. In this paper, we introduce a general consistency condition covering communication-reduced and asynchronous distributed SGD implementations. Our framework, called elastic consistency enables us to derive convergence bounds for a variety of distributed SGD methods used in practice to train large-scale machine learning models. The proposed framework de-clutters the implementation-specific convergence analysis and provides an abstraction to derive convergence bounds. We utilize the framework to analyze a sparsification scheme for distributed SGD methods in an asynchronous setting for convex and non-convex objectives. We implement the distributed SGD variant to train deep CNN models in an asynchronous shared-memory setting. Empirical results show that error-feedback may not necessarily help in improving the convergence of sparsified asynchronous distributed SGD, which corroborates an insight suggested by our convergence analysis.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.