Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Attack based DoS attack detection using multiple classifier (2001.05707v1)

Published 16 Jan 2020 in cs.NI and cs.CR

Abstract: One of the most common internet attacks causing significant economic losses in recent years is the Denial of Service (DoS) flooding attack. As a countermeasure, intrusion detection systems equipped with machine learning classification algorithms were developed to detect anomalies in network traffic. These classification algorithms had varying degrees of success, depending on the type of DoS attack used. In this paper, we use an SNMP-MIB dataset from real testbed to explore the most prominent DoS attacks and the chances of their detection based on the classification algorithm used. The results show that most DOS attacks used nowadays can be detected with high accuracy using machine learning classification techniques based on features provided by SNMP-MIB. We also conclude that of all the attacks we studied, the Slowloris attack had the highest detection rate, on the other hand TCP-SYN had the lowest detection rate throughout all classification techniques, despite being one of the most used DoS attacks.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.