Emergent Mind

Distributed, partially collapsed MCMC for Bayesian Nonparametrics

(2001.05591)
Published Jan 15, 2020 in stat.ML and cs.LG

Abstract

Bayesian nonparametric (BNP) models provide elegant methods for discovering underlying latent features within a data set, but inference in such models can be slow. We exploit the fact that completely random measures, which commonly used models like the Dirichlet process and the beta-Bernoulli process can be expressed as, are decomposable into independent sub-measures. We use this decomposition to partition the latent measure into a finite measure containing only instantiated components, and an infinite measure containing all other components. We then select different inference algorithms for the two components: uncollapsed samplers mix well on the finite measure, while collapsed samplers mix well on the infinite, sparsely occupied tail. The resulting hybrid algorithm can be applied to a wide class of models, and can be easily distributed to allow scalable inference without sacrificing asymptotic convergence guarantees.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.