Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compressing Permutation Groups into Grammars and Polytopes. A Graph Embedding Approach (2001.05583v1)

Published 15 Jan 2020 in cs.FL and cs.CC

Abstract: It can be shown that each permutation group $G \sqsubseteq S_n$ can be embedded, in a well defined sense, in a connected graph with $O(n+|G|)$ vertices. Some groups, however, require much fewer vertices. For instance, $S_n$ itself can be embedded in the $n$-clique $K_n$, a connected graph with n vertices. In this work, we show that the minimum size of a context-free grammar generating a finite permutation group $G \sqsubseteq S_n$ can be upper bounded by three structural parameters of connected graphs embedding $G$: the number of vertices, the treewidth, and the maximum degree. More precisely, we show that any permutation group $G \sqsubseteq S_n$ that can be embedded into a connected graph with $m$ vertices, treewidth k, and maximum degree $\Delta$, can also be generated by a context-free grammar of size $2{O(k\Delta\log\Delta)}\cdot m{O(k)}$. By combining our upper bound with a connection between the extension complexity of a permutation group and the grammar complexity of a formal language, we also get that these permutation groups can be represented by polytopes of extension complexity $2{O(k \Delta\log \Delta)}\cdot m{O(k)}$. The above upper bounds can be used to provide trade-offs between the index of permutation groups, and the number of vertices, treewidth and maximum degree of connected graphs embedding these groups. In particular, by combining our main result with a celebrated $2{\Omega(n)}$ lower bound on the grammar complexity of the symmetric group $S_n$ we have that connected graphs of treewidth $o(n/\log n)$ and maximum degree $o(n/\log n)$ embedding subgroups of $S_n$ of index $2{cn}$ for some small constant $c$ must have $n{\omega(1)}$ vertices. This lower bound can be improved to exponential on graphs of treewidth $n{\varepsilon}$ for $\varepsilon<1$ and maximum degree $o(n/\log n)$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.