Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Model Evaluation under Non-constant Class Imbalance (2001.05571v2)

Published 15 Jan 2020 in cs.LG and stat.ML

Abstract: Many real-world classification problems are significantly class-imbalanced to detriment of the class of interest. The standard set of proper evaluation metrics is well-known but the usual assumption is that the test dataset imbalance equals the real-world imbalance. In practice, this assumption is often broken for various reasons. The reported results are then often too optimistic and may lead to wrong conclusions about industrial impact and suitability of proposed techniques. We introduce methods focusing on evaluation under non-constant class imbalance. We show that not only the absolute values of commonly used metrics, but even the order of classifiers in relation to the evaluation metric used is affected by the change of the imbalance rate. Finally, we demonstrate that using subsampling in order to get a test dataset with class imbalance equal to the one observed in the wild is not necessary, and eventually can lead to significant errors in classifier's performance estimate.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.