Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A "Network Pruning Network" Approach to Deep Model Compression (2001.05545v1)

Published 15 Jan 2020 in cs.CV, cs.LG, and stat.ML

Abstract: We present a filter pruning approach for deep model compression, using a multitask network. Our approach is based on learning a a pruner network to prune a pre-trained target network. The pruner is essentially a multitask deep neural network with binary outputs that help identify the filters from each layer of the original network that do not have any significant contribution to the model and can therefore be pruned. The pruner network has the same architecture as the original network except that it has a multitask/multi-output last layer containing binary-valued outputs (one per filter), which indicate which filters have to be pruned. The pruner's goal is to minimize the number of filters from the original network by assigning zero weights to the corresponding output feature-maps. In contrast to most of the existing methods, instead of relying on iterative pruning, our approach can prune the network (original network) in one go and, moreover, does not require specifying the degree of pruning for each layer (and can learn it instead). The compressed model produced by our approach is generic and does not need any special hardware/software support. Moreover, augmenting with other methods such as knowledge distillation, quantization, and connection pruning can increase the degree of compression for the proposed approach. We show the efficacy of our proposed approach for classification and object detection tasks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.