Papers
Topics
Authors
Recent
2000 character limit reached

Bridging Convex and Nonconvex Optimization in Robust PCA: Noise, Outliers, and Missing Data (2001.05484v2)

Published 15 Jan 2020 in stat.ML, cs.IT, cs.LG, eess.SP, math.IT, math.OC, math.ST, and stat.TH

Abstract: This paper delivers improved theoretical guarantees for the convex programming approach in low-rank matrix estimation, in the presence of (1) random noise, (2) gross sparse outliers, and (3) missing data. This problem, often dubbed as robust principal component analysis (robust PCA), finds applications in various domains. Despite the wide applicability of convex relaxation, the available statistical support (particularly the stability analysis vis-`a-vis random noise) remains highly suboptimal, which we strengthen in this paper. When the unknown matrix is well-conditioned, incoherent, and of constant rank, we demonstrate that a principled convex program achieves near-optimal statistical accuracy, in terms of both the Euclidean loss and the $\ell_{\infty}$ loss. All of this happens even when nearly a constant fraction of observations are corrupted by outliers with arbitrary magnitudes. The key analysis idea lies in bridging the convex program in use and an auxiliary nonconvex optimization algorithm, and hence the title of this paper.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.