Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lipschitz Lifelong Reinforcement Learning (2001.05411v3)

Published 15 Jan 2020 in cs.LG, cs.AI, and stat.ML

Abstract: We consider the problem of knowledge transfer when an agent is facing a series of Reinforcement Learning (RL) tasks. We introduce a novel metric between Markov Decision Processes (MDPs) and establish that close MDPs have close optimal value functions. Formally, the optimal value functions are Lipschitz continuous with respect to the tasks space. These theoretical results lead us to a value-transfer method for Lifelong RL, which we use to build a PAC-MDP algorithm with improved convergence rate. Further, we show the method to experience no negative transfer with high probability. We illustrate the benefits of the method in Lifelong RL experiments.

Citations (33)

Summary

We haven't generated a summary for this paper yet.