Papers
Topics
Authors
Recent
2000 character limit reached

Causal Discovery from Incomplete Data: A Deep Learning Approach (2001.05343v1)

Published 15 Jan 2020 in cs.LG and stat.ML

Abstract: As systems are getting more autonomous with the development of artificial intelligence, it is important to discover the causal knowledge from observational sensory inputs. By encoding a series of cause-effect relations between events, causal networks can facilitate the prediction of effects from a given action and analyze their underlying data generation mechanism. However, missing data are ubiquitous in practical scenarios. Directly performing existing casual discovery algorithms on partially observed data may lead to the incorrect inference. To alleviate this issue, we proposed a deep learning framework, dubbed Imputated Causal Learning (ICL), to perform iterative missing data imputation and causal structure discovery. Through extensive simulations on both synthetic and real data, we show that ICL can outperform state-of-the-art methods under different missing data mechanisms.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.