Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Finite Element Approximation of Transmission Eigenvalues for Anisotropic Media (2001.05340v1)

Published 15 Jan 2020 in math.NA and cs.NA

Abstract: The transmission eigenvalue problem arises from the inverse scattering theory for inhomogeneous media and has important applications in many qualitative methods. The problem is posted as a system of two second order partial differential equations and is essentially nonlinear, non-selfadjoint, and of higher order. It is nontrivial to develop effective numerical methods and the proof of convergence is challenging. In this paper, we formulate the transmission eigenvalue problem for anisotropic media as an eigenvalue problem of a holomorphic Fredholm operator function of index zero. The Lagrange finite elements are used for discretization and the convergence is proved using the abstract approximation theory for holomorphic operator functions. A spectral indicator method is developed to compute the eigenvalues. Numerical examples are presented for validation.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.