Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Finite Element Approximation of Transmission Eigenvalues for Anisotropic Media (2001.05340v1)

Published 15 Jan 2020 in math.NA and cs.NA

Abstract: The transmission eigenvalue problem arises from the inverse scattering theory for inhomogeneous media and has important applications in many qualitative methods. The problem is posted as a system of two second order partial differential equations and is essentially nonlinear, non-selfadjoint, and of higher order. It is nontrivial to develop effective numerical methods and the proof of convergence is challenging. In this paper, we formulate the transmission eigenvalue problem for anisotropic media as an eigenvalue problem of a holomorphic Fredholm operator function of index zero. The Lagrange finite elements are used for discretization and the convergence is proved using the abstract approximation theory for holomorphic operator functions. A spectral indicator method is developed to compute the eigenvalues. Numerical examples are presented for validation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube