Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A new finite element approach for the Dirichlet eigenvalue problem (2001.05332v1)

Published 15 Jan 2020 in math.NA and cs.NA

Abstract: In this paper, we propose a new finite element approach, which is different than the classic Babuska-Osborn theory, to approximate Dirichlet eigenvalues. The Dirichlet eigenvalue problem is formulated as the eigenvalue problem of a holomorphic Fredholm operator function of index zero. Using conforming finite elements, the convergence is proved using the abstract approximation theory for holomorphic operator functions. The spectral indicator method is employed to compute the eigenvalues. A numerical example is presented to validate the theory.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.