Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

CycleCluster: Modernising Clustering Regularisation for Deep Semi-Supervised Classification (2001.05317v2)

Published 15 Jan 2020 in cs.LG and stat.ML

Abstract: Given the potential difficulties in obtaining large quantities of labelled data, many works have explored the use of deep semi-supervised learning, which uses both labelled and unlabelled data to train a neural network architecture. The vast majority of SSL approaches focus on implementing the low-density separation assumption or consistency assumption, the idea that decision boundaries should lie in low density regions. However, they have implemented this assumption by making local changes to the decision boundary at each data point, ignoring the global structure of the data. In this work, we explore an alternative approach using the global information present in the clustered data to update our decision boundaries. We propose a novel framework, CycleCluster, for deep semi-supervised classification. Our core optimisation is driven by a new clustering based regularisation along with a graph based pseudo-labels and a shared deep network. Demonstrating that direct implementation of the cluster assumption is a viable alternative to the popular consistency based regularisation. We demonstrate the predictive capability of our technique through a careful set of numerical results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.