Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Optimal Skeleton Huffman Trees Revisited (2001.05239v2)

Published 15 Jan 2020 in cs.DS

Abstract: A skeleton Huffman tree is a Huffman tree in which all disjoint maximal perfect subtrees are shrunk into leaves. Skeleton Huffman trees, besides saving storage space, are also used for faster decoding and for speeding up Huffman-shaped wavelet trees. In 2017 Klein et al. introduced an optimal skeleton tree: for given symbol frequencies, it has the least number of nodes among all optimal prefix-free code trees (not necessarily Huffman's) with shrunk perfect subtrees. Klein et al. described a simple algorithm that, for fixed codeword lengths, finds a skeleton tree with the least number of nodes; with this algorithm one can process each set of optimal codeword lengths to find an optimal skeleton tree. However, there are exponentially many such sets in the worst case. We describe an $O(n2\log n)$-time algorithm that, given $n$ symbol frequencies, constructs an optimal skeleton tree and its corresponding optimal code.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube