Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Massively parallel finite difference elasticity using block-structured adaptive mesh refinement with a geometric multigrid solver (2001.04789v2)

Published 10 Jan 2020 in cs.CE

Abstract: Computationally solving the equations of elasticity is a key component in many materials science and mechanics simulations. Phenomena such as deformation-induced microstructure evolution, microfracture, and microvoid nucleation are examples of applications for which accurate stress and strain fields are required. A characteristic feature of these simulations is that the problem domain is simple (typically a rectilinear representative volume element (RVE)), but the evolution of internal topological features is extremely complex. Traditionally, the finite element method (FEM) is used for elasticity calculations; FEM is nearly ubiquituous due to (1) its ability to handle meshes of complex geometry using isoparametric elements, and (2) the weak formulation which eschews the need for computation of second derivatives. However, variable topology problems (e.g. microstructure evolution) require either remeshing, or adaptive mesh refinement (AMR) - both of which can cause extensive overhead and limited scaling. Block-structured AMR (BSAMR) is a method for adaptive mesh refinement that exhibits good scaling and is well-suited for many problems in materials science. Here, it is shown that the equations of elasticity can be efficiently solved using BSAMR using the finite difference method. The boundary operator method is used to treat different types of boundary conditions, and the "reflux-free" method is introduced to efficiently and easily treat the coarse-fine boundaries that arise in BSAMR. Examples are presented that demonstrate the use of this method in a variety of cases relevant to materials science: Eshelby inclusions, fracture, and microstructure evolution. Reasonable scaling is demonstrated up to $\sim$4000 processors with tens of millions of grid points, and good AMR efficiency is observed.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.