Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial-Spectral Residual Network for Hyperspectral Image Super-Resolution (2001.04609v1)

Published 14 Jan 2020 in cs.CV and eess.IV

Abstract: Deep learning-based hyperspectral image super-resolution (SR) methods have achieved great success recently. However, most existing models can not effectively explore spatial information and spectral information between bands simultaneously, obtaining relatively low performance. To address this issue, in this paper, we propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet). Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information. Furthermore, we design a spectral-spatial residual module (SSRM) to adaptively learn more effective features from all the hierarchical features in units through local feature fusion, significantly improving the performance of the algorithm. In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train. Extensive evaluations and comparisons on three benchmark datasets demonstrate that the proposed approach achieves superior performance in comparison to existing state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qi Wang (561 papers)
  2. Qiang Li (449 papers)
  3. Xuelong Li (268 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.