Group Testing with Runlength Constraints for Topological Molecular Storage (2001.04577v1)
Abstract: Motivated by applications in topological DNA-based data storage, we introduce and study a novel setting of Non-Adaptive Group Testing (NAGT) with runlength constraints on the columns of the test matrix, in the sense that any two 1's must be separated by a run of at least d 0's. We describe and analyze a probabilistic construction of a runlength-constrained scheme in the zero-error and vanishing error settings, and show that the number of tests required by this construction is optimal up to logarithmic factors in the runlength constraint d and the number of defectives k in both cases. Surprisingly, our results show that runlength-constrained NAGT is not more demanding than unconstrained NAGT when d=O(k), and that for almost all choices of d and k it is not more demanding than NAGT with a column Hamming weight constraint only. Towards obtaining runlength-constrained Quantitative NAGT (QNAGT) schemes with good parameters, we also provide lower bounds for this setting and a nearly optimal probabilistic construction of a QNAGT scheme with a column Hamming weight constraint.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.