Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Proximal Method of Multipliers for a Class of Nonsmooth Convex Optimization (2001.03944v1)

Published 12 Jan 2020 in math.NA and cs.NA

Abstract: This paper develops the proximal method of multipliers for a class of nonsmooth convex optimization. The method generates a sequence of minimization problems (subproblems). We show that the sequence of approximations to the solutions of the subproblems converges to a saddle point of the Lagrangian even if the original optimization problem may possess multiple solutions. The augmented Lagrangian due to Fortin appears in the subproblem. The remarkable property of the augmented Lagrangian over the standard Lagrangian is that it is always differentiable, and it is often semismoothly differentiable. This fact allows us to employ a nonsmooth Newton method for computing an approximation to the subproblem. The proximal term serves as the regularization of the objective function and guarantees the solvability of the Newton system without assuming strong convexity on the objective function. We exploit the theory of the nonsmooth Newton method to provide a rigorous proof for the global convergence of the proposed algorithm.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)