Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Private and Communication-Efficient Edge Learning: A Sparse Differential Gaussian-Masking Distributed SGD Approach (2001.03836v4)

Published 12 Jan 2020 in cs.DC, cs.CR, cs.LG, and cs.NI

Abstract: With rise of ML and the proliferation of smart mobile devices, recent years have witnessed a surge of interest in performing ML in wireless edge networks. In this paper, we consider the problem of jointly improving data privacy and communication efficiency of distributed edge learning, both of which are critical performance metrics in wireless edge network computing. Toward this end, we propose a new decentralized stochastic gradient method with sparse differential Gaussian-masked stochastic gradients (SDM-DSGD) for non-convex distributed edge learning. Our main contributions are three-fold: i) We theoretically establish the privacy and communication efficiency performance guarantee of our SDM-DSGD method, which outperforms all existing works; ii) We show that SDM-DSGD improves the fundamental training-privacy trade-off by {\em two orders of magnitude} compared with the state-of-the-art. iii) We reveal theoretical insights and offer practical design guidelines for the interactions between privacy preservation and communication efficiency, two conflicting performance goals. We conduct extensive experiments with a variety of learning models on MNIST and CIFAR-10 datasets to verify our theoretical findings. Collectively, our results contribute to the theory and algorithm design for distributed edge learning.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.