Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Confidence Scores Make Instance-dependent Label-noise Learning Possible (2001.03772v2)

Published 11 Jan 2020 in cs.LG and stat.ML

Abstract: In learning with noisy labels, for every instance, its label can randomly walk to other classes following a transition distribution which is named a noise model. Well-studied noise models are all instance-independent, namely, the transition depends only on the original label but not the instance itself, and thus they are less practical in the wild. Fortunately, methods based on instance-dependent noise have been studied, but most of them have to rely on strong assumptions on the noise models. To alleviate this issue, we introduce confidence-scored instance-dependent noise (CSIDN), where each instance-label pair is equipped with a confidence score. We find with the help of confidence scores, the transition distribution of each instance can be approximately estimated. Similarly to the powerful forward correction for instance-independent noise, we propose a novel instance-level forward correction for CSIDN. We demonstrate the utility and effectiveness of our method through multiple experiments under synthetic label noise and real-world unknown noise.

Citations (91)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.