Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stochastic Recursive Gradient Descent Ascent for Stochastic Nonconvex-Strongly-Concave Minimax Problems (2001.03724v2)

Published 11 Jan 2020 in cs.LG, math.OC, and stat.ML

Abstract: We consider nonconvex-concave minimax optimization problems of the form $\min_{\bf x}\max_{\bf y\in{\mathcal Y}} f({\bf x},{\bf y})$, where $f$ is strongly-concave in $\bf y$ but possibly nonconvex in $\bf x$ and ${\mathcal Y}$ is a convex and compact set. We focus on the stochastic setting, where we can only access an unbiased stochastic gradient estimate of $f$ at each iteration. This formulation includes many machine learning applications as special cases such as robust optimization and adversary training. We are interested in finding an ${\mathcal O}(\varepsilon)$-stationary point of the function $\Phi(\cdot)=\max_{\bf y\in{\mathcal Y}} f(\cdot, {\bf y})$. The most popular algorithm to solve this problem is stochastic gradient decent ascent, which requires $\mathcal O(\kappa3\varepsilon{-4})$ stochastic gradient evaluations, where $\kappa$ is the condition number. In this paper, we propose a novel method called Stochastic Recursive gradiEnt Descent Ascent (SREDA), which estimates gradients more efficiently using variance reduction. This method achieves the best known stochastic gradient complexity of ${\mathcal O}(\kappa3\varepsilon{-3})$, and its dependency on $\varepsilon$ is optimal for this problem.

Citations (118)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.