Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AE-OT-GAN: Training GANs from data specific latent distribution (2001.03698v2)

Published 11 Jan 2020 in cs.CV and eess.IV

Abstract: Though generative adversarial networks (GANs) areprominent models to generate realistic and crisp images,they often encounter the mode collapse problems and arehard to train, which comes from approximating the intrinsicdiscontinuous distribution transform map with continuousDNNs. The recently proposed AE-OT model addresses thisproblem by explicitly computing the discontinuous distribu-tion transform map through solving a semi-discrete optimaltransport (OT) map in the latent space of the autoencoder.However the generated images are blurry. In this paper, wepropose the AE-OT-GAN model to utilize the advantages ofthe both models: generate high quality images and at thesame time overcome the mode collapse/mixture problems.Specifically, we first faithfully embed the low dimensionalimage manifold into the latent space by training an autoen-coder (AE). Then we compute the optimal transport (OT)map that pushes forward the uniform distribution to the la-tent distribution supported on the latent manifold. Finally,our GAN model is trained to generate high quality imagesfrom the latent distribution, the distribution transform mapfrom which to the empirical data distribution will be con-tinuous. The paired data between the latent code and thereal images gives us further constriction about the generator.Experiments on simple MNIST dataset and complex datasetslike Cifar-10 and CelebA show the efficacy and efficiency ofour proposed method.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube