Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

ReluDiff: Differential Verification of Deep Neural Networks (2001.03662v2)

Published 10 Jan 2020 in cs.LG, cs.LO, cs.SE, and stat.ML

Abstract: As deep neural networks are increasingly being deployed in practice, their efficiency has become an important issue. While there are compression techniques for reducing the network's size, energy consumption and computational requirement, they only demonstrate empirically that there is no loss of accuracy, but lack formal guarantees of the compressed network, e.g., in the presence of adversarial examples. Existing verification techniques such as Reluplex, ReluVal, and DeepPoly provide formal guarantees, but they are designed for analyzing a single network instead of the relationship between two networks. To fill the gap, we develop a new method for differential verification of two closely related networks. Our method consists of a fast but approximate forward interval analysis pass followed by a backward pass that iteratively refines the approximation until the desired property is verified. We have two main innovations. During the forward pass, we exploit structural and behavioral similarities of the two networks to more accurately bound the difference between the output neurons of the two networks. Then in the backward pass, we leverage the gradient differences to more accurately compute the most beneficial refinement. Our experiments show that, compared to state-of-the-art verification tools, our method can achieve orders-of-magnitude speedup and prove many more properties than existing tools.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.